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Estimation of critical indices for the three-dimensional 
Ising model 

D S Gaunt and M F Sykes 
Wheatstone Physics Laboratory, King's College, London, UK 

Received 10 May 1973 

Abstract. New series expansion data for the three-dimensional king model are analysed. 
A special study of the diamond and face-centred cubic lattices is made. Below the critical 
temperature convergence is found to be slow. It is concluded that all available data are 
consistent with fi  = & (magnetization) and not inconsistent with the 'scaling' value y' = 14 
(susceptibility) and that with the data and methods available at present it is not possible 
to draw more precise conclusions. 

1. Introduction 

It is the main purpose of this paper to examine new data for the Ising model on the 
face-centred cubic and diamond lattices. We study the critical indices for the zero-field 
specific heat CH and reduced susceptibility x above (U, y) and below (E', y') the critical 
temperature T,  , and for the spontaneous magnetization I@). The precise determination 
of these indices is of great theoretical interest ; they are of particular relevance to the 
theory of scaling. (For a general introduction and review see Domb 1960 and Fisher 
1963, 1965, 1967; for series analysis techniques see Gaunt and Guttmann 1973; for the 
theory of scaling see Fisher 1967, Kadanoff et all967 and Stanley 1971). 

Recently extended data for the high-temperature expansions of the specific heat and 
susceptibility of the face-centred, body-centred and simple cubic lattices appear to be 
quite consistent with the long-held view that the critical indices E and y are exactly and 
1; respectively, in three dimensions (Sykes et a1 1972a, b, c) ; further the decay of even-odd 
oscillations for the body-centred and simple cubic lattices is consistent with the independ- 
ent direct estimates of the critical specific heat index (Sykes et a1 1972b, c). 

In figure 1 we illustrate what may be described as the orthodox view of the high- 
temperature situation. Using expansions in powers of the standard high-temperature 
counting variable U = tanh K : 

x = Canon (1.1) 

CH - = bnv", R (1.2) 

ratios of successive coefficients for the face-centred cubic lattice are plotted against l/n. 
It will be seen that the behaviour exhibits a striking linearity for quite small values of n ;  
similar results are obtained for the simple cubic lattice and body-centred cubic lattice 
which exhibit an even-odd oscillation. The development of a regular pattern of be- 
havior for small values of n is an observed fact ; the implicit assumption of the method is 
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Figure 1. High-temperature situation for the facecentred cubic lattice. Ratios pa of succes- 
sive coefficients of the zero-field susceptibility (A) and specific heat (B) series plotted against 
l/n. The asymptotes corresponding to y = l$ and a = Q with l/o, = 9.8290 (Sykes et al 
1972b) are shown as broken lines. 

that the hypotheses made to explain this behaviour (the presence of the singularities 
described in detail by Sykes et a1 1972a, b, c) are correct and that the extrapolation 
represented by the broken lines is essentially valid. On this basis precise estimates of the 
critical temperature can be made (Sykes et a1 1972b). Loose-packed lattices of low 
coordination number present a more complex situation ; there seems no reason to doubt, 
however, that the dominant singularities remain the same. We examine this aspect in 0 2 
since we require an estimate of the critical temperature of the diamond lattice. 

In contrast to the simple high-temperature situation depicted in figure 1 the face- 
centred cubic lattice yields low-temperature expansions with a most irregular pattern, 
the extrapolation of which long presented a problem; the coefficients can be regrouped 
(Domb and Sykes 1956) but it appears better to resort to more general methods of 
extrapolation (see Gaunt and Guttmann 1973). 

Expansions for the spontaneous magnetization and zero-field configurational free 
energy in powers of u = exp( - 4J/kT) are given by Sykes et a1 (1965), and for the zero-field 
susceptibility by Essam and Fisher (1963), through u28 ; recently these expansions have 
been extended by specialized techniques (Sykes et a1 1973c, d, e) through u40 (Sykes et a1 
1973a, b) and we make an analysis of the new data in 8 3. Loose-packed lattices of low 
coordination number appear to present a less complex situation; it was suggested by 
Block (1963) that the diamond lattice be studied as it seemed to give series whose coeffici- 
ents are all of one sign and should therefore converge up to the critical temperature; this 
property was confirmed by the investigation of Essam and Sykes (1963) who derived 
expansions through ul ' .  These expansions are now available through U'' (Sykes et al 
1973a, b). 

In figure 2 we illustrate the ratio plot which corresponds to the present low-tempera- 
ture situation on the diamond lattice. The susceptibility is less well behaved than most 
high-temperature expansions but appears to be settling down, with an asymptote 
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Fw 2. Low-temperature situation for the diamond lattice. Ratios pn of successive 
coefficients of the zero-field susceptibility (A), magnetization (B) and specific heat (C)  series 
plotted against l j n .  The asymptotes corresponding to y’ = 1: (D), fl  = (E), a’ = Q (F) 
and a’ = 0 (G) with l/u, = 2.8264 (equation (2.6)) are shown as broken lines. 

corresponding to y‘ = la or alternatively perhaps as much as 10% above this. The 
magnetization expansion is also apparently converging with an asymptote close to 
fl = &, Even with n = 15, however, the specific heat can hardly be said to have con- 
verged and is still quite consistent with a’ = i or a’ = 0 (logarithm). The situation is 
closely analogous to the high-temperature situation of figure 1 where the specific heat 
only becomes smooth for higher values of n than the susceptibility. We conclude from 
figure 2 that altogether the general quality of the data is still much inferior to that 
available at high temperatures. It is possible the situation could be improved by choosing 
still looser packed lattices, such as the hydrogen peroxide lattice (Leu et al 1969) and this 
possibility is currently being investigated (Betts, private communication). 

2. Estimation of the critical point for the diamond lattice 

The critical temperature of a three-dimensional lattice is usually estimated from the high- 
temperature expansion of the susceptibility ; to provide guidelines to the asymptotic 
behaviour the most nearly related two-dimensional lattice whose critical temperature 
is known is usefully studied at the same time (Sykes et a1 1972a, b). For the diamond 
lattice we therefore examine the honeycomb lattice ; unfortunately, as is well known, this 
lattice has a susceptibility expansion whose behaviour is complicated by the apparent 
presence of a pair of complex conjugate singularities on the radius of convergence, lying 
on the imaginary axis (Sykes and Fisher 1962, Sykes et a! 1972a). This makes the refined 
analyses developed for other lattices (Sykes et a1 1972b) less effective; in a previous 
investigation (Sykes et a1 1972a) we have been unable to provide a completely satisfactory 
representation for the honeycomb susceptibility. However this does not mean that the 
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series cannot be made to yield satisfactory estimates of the critical temperature; for 
this it suffices to seek empirical methods of averaging or smoothing the oscillations. 

Essam and Sykes (1963) in their study of the diamond lattice give the susceptibility 
expansion in the form (1.1) through d6. We have corrected a small error in the last 
coefficient and extended the series through U'' to obtain : 

x = 1 + 4~ + 1 2 ~ '  + 3 6 ~ '  + 1 0 8 ~ ~  + 324~'  + 9 4 8 0 ~  + 2 7 7 2 ~ ~  + 80760~ -t 2 3 5 0 8 ~ ~  

+6798Ou'O+ 196548~" + 566820~ '~+  1633956~'~  +4697412u14 

+ 13501492~~~+38742652u'~+ 111146820~'~+318390684u'~ 

+911904996d9 +2608952940uZ0 + 7463042916~~'+21328259716u~~ 

+ .... (2.1) 
Essam and Sykes used the quantities 

8" = M,+/3,-1) (2.3) 
the latter average being introduced to smooth even-odd oscillations. In figure 3 we 
illustrate these quantities for the honeycomb lattice. Both /3 and 8 exhibit an oscillation 
of period four which corresponds to the interplay of an even-odd oscillation (due to the 
antiferromagnetic singularity) and an oscillation usually ascribed to the pair of complex 
conjugate singularities on the imaginary axis. The quantity fl does not represent any 
noticeable improvement on /3; this is because for the honeycomb, the pair of singularities 
on the imaginary axis is at least comparable in strength with the antiferromagnetic 
singularity. However fl contains a subsequence (n even) which approaches the exact limit 
(1.7320508.. .) fairly smoothly. From figure 3 

l / ~ ,  = 1.731 _+0*004 (2.4) 

L a  
8 16 ,, 24 32 

Figme 3. Honeycomb lattice. Plots against n of successive estimates for l/u, provided by 
/3. (broken lines) and 8. (full lines). The horizontal line represents the exact limit. 
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would seem a not unreasonable objective estimate ; it represents an uncertainty of about 
a %. Figure 3 also well illustrates the fact that by a study of /3 the dominant ferromagnetic 
singularity is allowed for, and the remaining irregularities cluster around the true limit 
which is approached more or less symmetrically. 

In figure 4 we illustrate the same quantities for the diamond lattice. The general 
conclusion of Essam and Sykes (1963) that the terms then available had settled down to a 
characteristic even-odd oscillation (in /3) is still consistent with the behaviour of the six 
new coefficients. The troublesome oscillation of period four which is present in the 
honeycomb was not noticed for the diamond; it will be seen from figure 4 that there is 

- 2 4 2 1  
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Q 
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-2.825 

I I 
IO 15 20 

n 

Figure 4. Diamond lattice. Plots against n of successive estimates for l/v, provided by 8. 
(broken lines) and 8" (full lines). 

now some evidence that an oscillation of this kind is becoming established ; its amplitude 
appears to be much less than that of the dominant even-odd oscillation, which latter 
can be understood in the usual way as due to the antiferromagnetic singularity. It is to be 
supposed that here also there is a conjugate pair of singularities on, or very close to, the 
radius of convergence and the imaginary axis. This has been confirmed by a Pad6 
approximant analysis of the (d/du) In ~ ( u )  series. 

The new data are quite consistent with the 1963 estimate of 

l / ~ ,  = 2-8262 f O*OOo5 (2.5) 
but if the indicated trend continues then we would conclude that the limit is very slightly 
higher at 

l / ~ ,  = 2*8264f0*0002 (2.6) 
which is included in (2.5). A more refined study is difficult because it requires some hypo- 
thesis about the nature of the generating function corresponding to the period four 
oscillation; as we have seen this has not proved possible for the honeycomb lattice. 
Fortunately the disturbing singularities seem to be less violent in their effect and the 
estimate (2.6) should be a reasonable one subject to the assumptions of the method. 
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Although ten fewer coefficients are available the oscillations are about a tenth as large 
making (2.6) correspondingly more precise than (2.4). 

The ratio method is particularly sensitive to small deviations from the assumed 
asymptotic behaviour. For the situation depicted in figure I this is all to the good, since 
the convergence is then seen to be all the more impressive. However, when the asymptotic 
behaviour is perturbed by contributions from interfering singularities lying on, or close 
to, the circle of convergence, we would expect the Pad6 approximant procedures to be 
more suitable. This is supported by the numerical experiments of Hunter and Baker 
(1973) for a variety of test functions. We present in table 1 diagonal and paradiagonal 
sequences of PadC approximant estimates of l/u, for the honeycomb and diamond 
lattices. These were obtained by calculating the reciprocals of the appropriate poles of 
PadC approximants to the series expansions of ( ~ ( u ) ) ” ~ .  For the honeycomb lattice the 
last few estimates in each sequence differ from the exact result by less than 7 parts in lo6 ; 
this represents a substantial increase in accuracy over (2.4). For the diamond lattice the 
sequences appear to be converging just as rapidly and we estimate 

l / ~ ,  = 2.82641 f0.00010 (2.7) 

in excellent agreement with (2.6) and some two times as precise. 

Table 1. Honeycomb and diamond lattices. Estimates of l/v, provided by the [ n + j / n ]  
Pad6 approximants. ‘Defective’ approximants having a ‘spurious’ pole with very small 
residue on the positive (t) and negative (3) real axes, and in the complex plane (8) are indicated. 

Honeycomb Diamond 

n j -1 0 +1 -1 0 f l  

1 1.714 1.357 1.729 3.200 2.600 2.785 
2 1.529 1.758 1.712t 2.736 2.858 2.932 
3 1.858 1,7753 1.75Q 2.9 12 2.8653 2.833 
4 1.697 1.717 1.725 2.824 2.825 2.826706 
5 1.737 1.731073 1.734 2.840 2.826568 2.826321 
6 1.732567 1.732529 1,732205 1.826479 2.8268281. 2.826130$ 
7 1.732574t 1.732063 1.732077 2.826398 2.826413 2.826421 
8 1,732078 1.7320631 1.732810?$ 2.826430 2.826418 2,826418 
9 1.731814: 1.73197% 1.73206138 2,826418 2.826418t 2.826420t 
10 1.7321865 1.732074 1*732067# 2426420t 2.8264178 2.826394 
11 1.732059 1,732057 1.732047 2.8264088 2.826488t 
12 1.732060t 1.732030 1.732041 
13 1.732045 1,732042 1.732040f 
14 1.732044$ 1.7320483 1.732045 
15 1.732045 1.732045 1.732047 
16 1.732045t 1.732046 

3. Analysis of low-temperature series 

Using the ratio method we may try to estimate the index y’ for the diamond lattice from 
the sequence 
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where now a, is the coefficient of U" in the low-temperature expansion of ~ ( u ) ,  and 
U, = exp( - 4J/kT,) is calculated from the central value in (2.6). Successive estimates are 
plotted against l /n  in figure 5 .  We have repeated the calculations using the largest and 
smallest values of l/u, allowed by the uncertainties in (2.6) ; the upper end of the error 
bar in figure 5 corresponds to the largest value, and vice versa. It is evidently not possible 
to attribute the 'hook' which develops in figure 5 for n > 13 to uncertainties in the critical 
temperature. , r5 

Figtue 5. Diamond lattice. Plots against l /n  of successive estimates for y' provided by yh. 
The error bar corresponds to the uncertainties in the critical temperature. For n < 15 
the errors are even smaller. 

Without the last two coefficients it might be thought that the series had settled down, 
suggesting a limit close to la; apparently this is not the case. However we do not think 
that the 'hook' necessarily excludes 1$ (or l&, or any other value for that matter) 
from being the exact limit; it simply implies that the series has still not settled down to its 
asymptotic behaviour. It seems likely that the slow convergence is related to the presence 
of disturbing singularities. A PadC approximant analysis of the (d/du) In ~ ( u )  series 
reveals a (complex conjugate) pair of non-physical singularities at 

U* = ( - 0.20 k 0.209 & (0.04 & 0.03i). (3.2) 
Since (u*I/u, = 1.23 & 0.23, these lie just outside (or possibly on) the radius of convergence 

for the diamond lattice by 
I u I  = U, = 0.22783.. . . 

Following Essam and Sykes (1963), we study the index 
examining the series for 

m d 
-U- In I(u) = c,u" 

du n = 2  
(3.3) 

If near U, 

Z(u) - B(u, - U)P (3.4) 
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where B is a constant amplitude, then it is easily shown that 

(n -+ 00). 
P 
U% 

c, - - (3.5) 

We have calculated successive estimates, c,uz, for /? and find 

. , .0*30338, 0.30619, 0.30742,0*30849, 0.30924,0*30974, 0.31027,0*31088. (3.6) 

(Uncertainties in U, only affect the fourth decimal place.) The sequence is increasing 
slowly and is quite consistent with /I = A; however the situation is closely analogous to 
that which obtains for the low-temperature susceptibility, in that the estimates are not 
sufficiently smooth to be extrapolable against l/n. 

Finally we try a Pad6 approximant analysis of the ~ ( u )  and ](U) series for both the 
diamond and face-centred cubic lattices. In view of the interfering singularities (3.2), the 
Pade approximant method may well be preferable to the ratio and related techniques 
used above for the diamond lattice; this follows from the discussion of 92. For the 
face-centred cubic lattice the ratio method is not applicable and the Pade approximant 
technique is the obvious choice. Although in one sense this lattice is the most difficult 
case by virtue of four non-physical singularities lying inside the circle IuI = U, (Guttmann 
1969), on the other hand the series are known further than for any other lattice. 

Estimates for y‘ and P are presented in table 2 and were obtained in the usual way by 
evaluating Pade approximants to the (U, - u)(d/du) In ~ ( u )  and (u-  u,)(d/du) In I(u) series 
respectively, at U = U,. The results certainly suggest that P is the same for both lattices 
and yield the estimate 

0.307 < P < 0.317 (3.7) 

in support of the conjecture P = A. Comparable results are obtained for the body- 
centred and simple cubic lattices. The last few estimates of y’ for the face-centred cubic 
lattice (excluding those approximants with ‘defects’, see Gaunt and Guttmann 1973) lie 
between 1.27 and 1.28. For the diamond lattice, the estimates tend to be somewhat larger 
and are mostly centred around 1.30. The corresponding results for the body-centred 
cubic lattice are similar to those for the face-centred cubic lattice ; those for the simple 
cubic lattice are closer to those for the diamond lattice. Since we believe the index y‘ to 
be the same for all these three-dimensional lattices, we conclude that the rate of converg- 
ence is too slow for precise conclusions to be drawn. However we consider the data 
justify our interpretation of figure 5 ; none of the results are necessarily inconsistent with 
the scaling value y’ = I t .  

4. General conclusions 

We have presented an analysis of new low-temperature series expansion data for the 
spontaneous magnetization and zero-field susceptibility of the Ising model for three- 
dimensional lattices. Although the diamond lattice yields expansions whose coefficients 
are all of one sign, and whose radius of convergence can be presumed accurately known 
from the high-temperature susceptibility expansion, convergence has been found dis- 
appointingly slow especially for the susceptibility series. Pade approximant studies of 
the corresponding series for the face-centred cubic lattice seem reasonably convergent 
for jl but are inconclusive for y’. We are of the opinion that the only reasonable conclusion 
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Table 2. (a) Diamond and (b) face-centred cubic lattices. Estimates of 7’ and B provided by 
the [n+j/n] Pad6 approximants. The uncertainties in U, affect the last decimal place of the 
y’ and B estimates by no more than 2 and 6 respectively. ‘Defective’ approximants having 
a ‘spurious’ pole with very small residue on the positive (7) and negative (3) real axes are 
indicated. 

Y’ B 

n\j -1 0 + 1  \ j  -1 0 + 1  

(a) Diamond 
1 1.384 0.622 
2 1.241 1.26 1 
3 1.225t 1.415 
4 1.294 1.313 
5 1.309 1.316t 
6 1.297 1.292 
I 

(b) Face-centred cubic 
5 1.305 0.754 
6 1.206 2.437t 
7 1.260 1.252 
8 1.287t 1.244 
9 1.249 1.263 
10 1.240t 1.362 
1 1  1.334 1.3553 
12 1.3523 1.355t$ 
13 1.274 1.274 
14 1.2743 1.275 
15 1.3243 1.27273 
16 1.256tSj 1.278 
17 1.276 

1.147 
1.330 
1.347 
1,308 
1.269 

1.200 
1.254 
1.255t 
1.248 
1.236t 
1.334 
1.3523 
1.27 1 
1.257t 
1.2771 
1.280 
1.319t 

8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

0.3048 
0.29441 
0.3066 
0.3142 
0.3110 
0.3107t 

0.2983 
0.3073 
0.30732 
0.3089 
0.3056t 
0.3055tt 
0.30597 
0.3081 
0.30743 
0.3 126 
0.3043t 
0.3 164 

0.3280 
0 
0.2985 
1.3646 
0.3 100 
0.31 12 
0.31 lot 

0.30501 
0.3071 
0.3085 
0.3085t 
0.3058t 
0.3063t 
0.3051t 
0.3061tt 
0.31561 
0.3 139 
0.3164 
0.31643 

0.3073 
0.2967 
0.29377 
0.3016 
0.3115 
0.31143 

0.3077 
0.3074 
0.3089 
0.3061t 
0.3061tS 
0.3061t 
0.3779 
0.30953 
0.3 129 
0.3112t 
0.3 164 

that can be drawn by present methods from the data available is that it is quite consistent 
with fl = and not inconsistent with y’ = la. We are deriving further coefficients in an 
attempt to resolve the uncertainty on y’. 

Acknowledgments 

This research has been supported (in part) by a grant from the Science Research Council 
and (in part) by the US Department of the Army through its European Office. We are 
indebted to A J Wyles for his assistance in the derivation of the high-temperature series 
expansion for the susceptibility of the diamond lattice. 

References 

Block E 1963 Ark. Fys. 24 79-80 
Domb C 1960 Adu. Phys. 9 149-361 
Domb C and Sykes M F 1956 Proc. R. Soc. A 235 247-59 
Essam J W and Fisher M E 1963 J .  chem. Phys. 38 802-12 



1526 D S Gaunt and M F Sykes 

Essam J W and Sykes M F 1963 Physica 29 378-88 
Fisher M E 1963 J. math. Phys. 4 278-86 
~ 1965 Lectures in Theoretical Physics vol 7C (Boulder: University of Colorado) pp 1-159 
- 1967 Rep. Prog. Phys. 30 61S730 
Gaunt D S and Guttmann A J 1973 Phase Transitions and Critical Phenomena vol3, ed C Domb and M S Green 

(New York: Academic Press) to be published 
Guttmann A J 1969 J. Phys. C: SolidSt. Phys. 2 1900-7 
Hunter D L and Baker G A Jr 1973 Phys. Reo. B 7 334676 
Kadanoff L P et a1 1967 Reo. mod. Phys. 39 395-429 
Leu J A, Betts D D and Elliott C J 1969 Can. J. Phys. 47 1671-89 
Stanley H E 1971 Introduction to Phase Transitions and Critical Phenomena (Oxford: Clarendon Press) 
Sykes M F, Essam J W and Gaunt D S 1965 J. math. Phys. 6 283-98 
Sykes M F and Fisher M E 1962 Physica 28 919-38 
Sykes M F, Gaunt D S, Essam J Wand Elliott C J 1973a J. Phys. A :  Math., Nucl. Gen. 6 1507-16 
Sykes M F et al1973b J .  Phys. A:  Math., Nucl. Gen. 6 1498-506 
Sykes M F, Gaunt D S, Essam J W and Hunter D L 1973c J. math. Phys. 14 1060-5 
Sykes M F, Gaunt D S, Roberts P D and Wyles J A 1972a J. Phys. A:  Gen. Phys. 5 624-39 
- 1972b J. Phys. A: Gen. Phys. 5 640-52 
Sykes M F, Hunter D L, McKenzie D S and Heap B R 1972c J. Phys. A:  Gen. Phys. 5 667-73 
Sykes M F et a1 1973d J .  math. Phys. 14 1066-70 
- 1973e J. math. Phys. 14 1071-4 


